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ABSTRACT: Detection of mass graves utilizing the hyperspectral information in airborne or satellite imagery is an untested application of
remote sensing technology. We examined the in situ spectral reflectance of an experimental animal mass grave in a tropical moist forest environment
and compared it to an identically constructed false grave which was refilled with soil, but contained no cattle carcasses over the course of a 16-month
period. The separability of the in situ reflectance spectra was examined with a combination of feature selection and five different nonparametric
pattern classifiers. We also scaled up the analysis to examine the spectral signature of the same experimental mass grave from an air-borne hyper-
spectral image collected 1 month following burial. Our results indicate that at both scales (in situ and airborne), the experimental grave had a spectral
signature that was distinct and therefore detectable from the false grave. In addition, we observed that vegetation regeneration was severely inhibited
over the mass grave containing cattle carcasses for up to a period of 16 months. This experimental study has demonstrated the real utility of airborne
hyperspectral imagery for the detection of a relatively small mass grave (5 m2) within a specific climatic zone. Other climatic zones will require
similar actualistic modeling studies, but it is clear that the applications of this technology provide the international community with both an early
detection tool and a tool for ongoing monitoring.
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Human rights violations leading to genocide and crimes against
humanity and the subsequent investigation and exhumation of mass
graves have received substantial attention over the last decade
(1–10). However, consensus not only lacks on who is in charge of
the actual exhumation and processing of evidence, but in the recogni-
tion of various types of ‘‘mass graves’’ and their definitions (6).
Regardless of the definition used to describe these large and complex
crime scenes, their existence in numerous countries is gradually being
acknowledged even if it is initially denied by the perpetrators.

Millions of people have disappeared in conflicts worldwide; for
example, over 200,000 people are conservatively estimated to be
missing in Guatemala (1), over 300,000 in Iraq (9), and over
800,000 in Rwanda (4,10). Similar patterns can be seen in other
countries, such as East Timor, Sudan, Afghanistan, Argentina,
Colombia, Chile, Cambodia, etc. The bodies of victims in these
conflicts are frequently buried in mass graves, often clandestine in
nature, at various locations within the countries.

Mass graves differ in size from country to country or even
within regions. Graves containing groups of two or more individu-
als to larger discrete graves with 10 to 100 victims have been

reported in Guatemala (1), whereas in other countries, such as Iraq,
Bosnia, and Rwanda, mass graves have been found to contain sev-
eral hundred victims (2–5,9,10). Not all graves are created by the
perpetrators; however, bodies may in some cases be recovered by
survivors or victims’ families and subsequently buried (1). These
graves tend to be clandestine and present similar difficulties for
accurate detection and recovery.

One of the most successful methods of locating mass graves has
been from witness or informant testimony (11), with most cases hav-
ing suboptimal accuracy, and a large amount of time and resources
having been spent on searching for the actual location of the graves.
As such, the security of personnel conducting the investigations has
become a serious and increasing problem in the timely investigation
of mass graves (9). Moreover, by the time a recovery team can assess
a scene, the bodies that are recovered are often in various stages of
decomposition, complicating or negating positive identification (12).

The working definition of a mass grave by Jessee and Skinner
(6) used in this study was ‘‘any location containing two or more
associated bodies, indiscriminately or deliberately placed.’’ The
definition from Jessee and Skinner (6) also elaborates on the con-
text stating that the victims ‘‘died as a result of extrajudicial, sum-
mary or arbitrary executions.’’ Because our objective is the
detection of the graves, the context of victims’ death does not pre-
clude other scenarios such as death following a natural catastrophe
(e.g., tsunami) or armed conflict. Nevertheless, it is implicit that for
the investigation carried out in this study the mass graves involve
burial in soil as opposed to other scenarios, such as burial beneath
building, in wells, or under water, etc. The study described below
is a constrained experimental protocol where a set of grave-filled
and grave-empty foci were created to test and explore the utility of
remote sensing to this problem. If remote detection has real utility
or potential to inform of or observe criminal acts of this kind
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subsequent to the event, then recourse may be made within the
context of the criminal code of that country or by the international
community. It therefore represents an impartial and important piece
of evidence which is secondarily material to the event.

Remote Sensing

The term ‘‘remote sensing’’ has been used to describe a number
of tools and technologies. In this study we refer to the discipline of
remote sensing from the earth and planetary sciences, and more
specifically, the recording and processing of reflected electromag-
netic radiation in the visible to shortwave infrared wavelengths
(13). The recording of the electromagnetic radiation can be
achieved at a number of scales with a variety of instruments. Mea-
surements can be ‘‘in situ’’ from a field portable spectroradiometer
where the data collected are point measurements of reflected radia-
tion. They can also be achieved from an aircraft with an imaging
spectroradiometer or from a satellite platform where the resultant
data is also in an image form. The concept of the ‘‘image’’ is anal-
ogous to a set of stacked photographs where each photograph is
only sensitive to a specific narrow range of wavelengths of light;
for example, the first photograph would only be sensitive to the
450–465 nm range while the twentieth in the stack only to 735–
750 nm, etc. Each layer in the image is digital thus comprising of
pixels which contain a number representative of the brightness of
the wavelength range of the layer. Values close to zero are darker
whereas values closer to 255 (in 8-bit data) are brighter. The set of
digital numbers from the same pixel in every layer (band) consti-
tutes the ‘‘spectral response’’; a representation of the magnitude of
reflected radiation across all wavelengths sampled (13). A common
graphical representation of the spectral response is to plot the
magnitude of the reflectance at each wavelength producing a two-
dimensional line graph. Peaks in the graph are ‘‘reflective’’ features
whereas depressions are ‘‘absorption’’ features (i.e., low reflec-
tance). As opposed to the interpretation of aerial photographs where
the information is solely spatial or contextual, the multiple layers
(bands) in a hyperspectral image (e.g., can be over 100 bands)
(14,15) contain other information about the surface (e.g., chemical
composition) that may be interpreted from the spectral responses.
Therefore, not only is the spatial information present in the image,
but it is enhanced by the spectral information contained in the mul-
tiple bands. Materials both natural (i.e., water, vegetation, soil, rock,
etc.) and man-made (i.e., concrete, ceramic, etc.) have different
spectral signatures that can be used to identify the type of material
or target or even obtain more detailed information about the mate-
rial, such as its mineral composition, vegetation type and health,
paint type, construction material type, etc. (13). This is because the

spectral signature is a product of a material or surface’s composi-
tion, texture, or topography (and ⁄ or grain size), and moisture con-
tent (16). In most cases, pixels from satellite and airborne imagery
represent complex mixtures of the spectral signatures of several tar-
gets ⁄ surfaces that make up the spatial extent of the pixel unless the
area of the pixel is smaller than the unique target ⁄ surface of inter-
est. In the former case, there may be pixels that have pure or
nearly pure representations of the spectral signatures and can be
referred to as ‘‘endmembers,’’ signatures from only one target ⁄ sur-
face of interest without mixing (15,17).

In this study, we compare the spectral signature of an experi-
mental animal proxy mass grave to that of a false grave over a per-
iod of 16 months from in situ spectral measurements collected with
a field portable spectroradiometer. We also examined an airborne
hyperspectral image acquired 1 month following burial to deter-
mine whether a grave during and following the decomposition of
the bodies reflects electromagnetic radiation differently from the
landscape and other disturbances that contextually resemble a grave
(e.g., false grave or exposed soil).

Methods

Study Area and Experimental Set-Up

The study area is located in north-western Costa Rica in a tropi-
cal moist forest ecosystem at an elevation of 300 m (18). The trop-
ical moist forest ecosystem is characterized by 2000–4000 mm of
seasonal precipitation per year, an average temperature greater than
17�C, and a potential evapotranspiration ratio of 0.5–1.0; it com-
prises 40% of the tropics (19,20). The choice of ecosystem type
was important to conduct the experiment in an area with compara-
ble climate to areas with a documented history of disappeared
persons and mass graves such as in Guatemala.

Transitions in land management practices over the years by a suc-
cession of land owners have resulted in extensive areas of cleared
forest to enter into unmanaged regeneration in our study area (18).
The experimental mass grave was created in an abandoned pasture
that is surrounded by secondary forest to the north and south, old
growth forest to the east, and a mosaic of pasture and secondary for-
est to the west (18). The pasture is covered by inhibitory, aggressive
grasses, Hyparrhenia rufa (Bergius) and Paspalum conjugatum
(Nees) (18). Figure 1 illustrates the study site. The soil is described
as a medium fertility Inceptisol, type Andic Ustic Humitropet, a
common soil type in the tropics (21). These soils have a clayey tex-
ture with a low concentration of P and Mg. They have some allo-
phone from the influence of past volcanic ash depositions that
rejuvenated the A horizon (i.e., reason for the Andic classification

a

b

FIG. 1—(a) High resolution infrared photograph of the experimental site indicating the location of the grave and refilled empty grave. The black square
next to the grave is a calibration panel. (b) Airborne hyperspectral image of the experimental site, 4.7 m spatial resolution.
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in the taxonomic name). Taking soil classification into consideration
is important because the physical and chemical properties of the soil
are a factor in any change in reflectance that may be seen following
subsurface cadaveric decomposition.

As described by Kalacska and Bell (22), two 5 · 5 · 1.5 m
holes were dug during the last week of February 2005 with a
motorized backhoe. The purpose was to create two identical
features ⁄graves as this represents the most confounding detection
problem. The carcasses of eight free-range antibiotic-free juvenile
cattle, total weight c. 750–800 lbs (340–363 kg), were purchased
from a local slaughterhouse. Organic, free-range livestock was used
to avoid a sterilized upper intestinal tract, a chronic outcome of
long-term antibiotic use, as this would negate the bacterial over-
growth characteristic of whole body decomposition at the stage of
‘‘bloating’’ and beyond (23,24). The animals were killed on site by
blunt force trauma to the head and immediately placed in two rows
of four in one of the grave features. Within 2 h the backfill was
systematically replaced with the same motorized backhoe and
operator interring the carcasses. All other graves were refilled in
the same manner. Any remaining soil was leveled within the
experimental grave excavation site, and it was not artificially
compacted or mounded.

Description of In Situ Spectral Measurements

The spectral response of the grave and the false grave was mea-
sured with an ASD Fieldspec FR handheld spectrometer (Analytical
Spectral Devices, Boulder, CO) within 2 h following burial. This
spectrometer measures reflected radiation from 350 to 2500 nm.
The purpose of this measurement was to establish a baseline and
ensure that any differences seen as the carcasses decompose are
not artifacts of differences in the soil that was excavated from and
replaced in the grave and the false grave. One month following
burial (March 2005), the spectral measurements were repeated (22).
Five and 16 months following burial (July 2005, June 2006), the
spectral response was measured with an ASD Fieldspec Handheld
spectrometer (Analytical Spectral Devices). This spectrometer mea-
sures reflected radiation from 325 to 1075 nm. For both the grave
and the false grave, all measurements were collected in a grid
sampling scheme with 50 spectra collected (i.e., five rows of 10
measurements). The field of view of both instruments was c. 4 cm
diameter (22) (sampling distance of c. 18 cm) and all measure-
ments were collected on clear sunny days. The integration time of
both instruments was set using a 99% reflective SpectralonTM

industry standard white reference panel (Labsphere, North Sutton,
NH). The SpectralonTM panel is a Lambertian surface, therefore its
reflectance is diffuse and under the same lighting conditions as the
samples, the panel is the brightest surface the instrument sees. A
standard ‘‘dark current correction’’ was applied to eliminate instru-
ment noise from spectral measurements (i.e., remove any interfer-
ence from the instrument itself). White reference measurements,
which measure the reflectance of the SpectralonTM panel, were
repeated after every 10 sample points from the grave and false
grave. These measurements of the SpectralonTM panel are impor-
tant because reflectance is calculated as the ratio of each measured
spectrum of the grave or false grave to the white reference spec-
trum. Prior to analysis, measurements at wavelengths with high
instrument noise from the ASD Handheld spectrometer (below
400 nm and above 900 nm), were removed from all the spectra.
The same spectral range is used for the data collected with the
ASD Fieldspec FR (i.e., data below 400 nm and above 900 nm
were omitted from the analyses). In summary, for each time period
(immediately following burial, 1, 5, and 16 months following

burial) the data set consists of 50 sampled points that cover the
400–900 nm range. The field of view of the instruments did not
overlap between measurements. For the analysis, each measured
spectrum is treated as a unique sample point.

Description of Airborne Hyperspectral Image

We also examined airborne hyperspectral imagery collected on
March 30, 2005 (1 month following burial) with the HyMap II
sensor (Hyvista, North Ryde, NSW, Australia) onboard a WB57
aircraft over a set of three flight lines. The spatial resolution of the
imagery is 4.7–5.2 m and contains 125 bands in the 450–2500 nm
range (25). A geocorrection was applied to the imagery by Hyvista
using their in-house processing software. Hyvista provided the
imagery as radiance (lW ⁄ cm2*sr*nm) and as surface reflectance
calculated from an atmospheric correction with Hyvista’s in-house
software. In this study we used the reflectance image because our
field measurements are also reflectance measurements and because
spectral features are more readily interpretable from reflectance
data as opposed to radiance.

In Situ Spectral Analysis

A fourth order polynomial Savitsky–Golay smoothing filter (26)
with a window size of 41 was applied to the in situ spectra from
all four time periods. With spectral bands spanning the 400–
900 nm range, the in situ data have 500 dimensions (i.e., each
wavelength from 400 to 900 represents one dimension). While
hyperspectral data contain substantial information in the narrow
contiguous bands, the data have different geometric and statistical
properties in comparison to conventional two- or three-dimensional
data (27). As the number of dimensions increases, the amount of
data necessary to properly estimate multivariate class densities also
increases; in our analysis we have two ‘‘classes’’ of interest, the
grave and the false grave. Reducing the dimensions of the data
from 500 to an ‘‘optimal number of dimension (bands)’’ is impor-
tant because it removes any redundant bands, makes the analysis
more manageable logistically and reduces the data to only the
bands that contain the most important information for separating
the spectra of the grave from the false grave (27). A technique
called ‘‘forward feature selection’’ (28,29) was thus applied to
reduce the dimensionality of the in situ data. In this technique ini-
tially all 500 bands are examined to locate the best one for separat-
ing the classes based on the nearest neighbor (NN) criterion. The
process is iterative as bands are added in the order they maximize
the criterion function (J). If the set of currently selected bands is
represented by Xdi, the criterion function Jj = J (Xdi + nj) is evalu-
ated and bands are added to the optimal set (nj) in the order they
most improve the value of Jj (30). We examined the top 10, 20,
and 30 bands. The theoretical maximum number of bands that can
be used in the classification approach that was employed after the
best bands were chosen can be calculated from F = (n ) g) ⁄ 3
where F is the maximum number of bands, n is the number of
spectra available, and g is the number of groups or classes (31).
The end result of the forward feature selection is a new dataset
with a reduced number of dimensions (i.e., 10–30 bands instead of
the original 500) that are the most effective at discriminating
between the grave and the refilled disturbance (false grave). At this
point in the analysis, there is neither the measure of how well the
reflectance of the grave and the false grave can be classified, nor
an indication of which classifier is best. The next step in the analy-
sis was to train specific classifiers to separate the reflectance of the
grave and false grave. Each classifier uses a different learning
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methodology and constructs different decision boundaries. This pro-
vides a measure of how well they classify (separate) the reflectance
spectra of the two classes.

A set of standard nonparametric classifiers were examined to dif-
ferentiate the reduced spectra obtained from the forward feature
selection (29). The classifiers we examined were a binary decision
tree (treec), a feed forward neural network using the Levenberg–
Marquardt optimization with two to five layers (lmnc 2–5)(32) and
the k-NN classifier which predicts the class membership of a data
point based on the class of its ‘‘k’’ nearest neighbours in feature
space (29). For this analysis we examined the two and three NNs
(knnc 2–3). The data were divided equally into training and valida-
tion datasets with labels were being supplied to indicate class mem-
bership. The training dataset was used to train the classifiers and
provide an error estimate while the validation dataset provided an
indication of how well each classifier discriminated between the
two classes. The optimal number of bands (10, 20, or 30) to use
with each classifier was determined by examining the training and
validation errors for each of the 10, 20, and 30 band sets. The point
at which the two error estimates were at a minimum was the opti-
mal number of bands for each classifier (33). Finally, to facilitate
the interpretation of the classification results, the relative separability
at each wavelength was mapped with the Bhattacharyya test
statistic which identifies the areas with the minimum attainable clas-
sification error (34,35). All analyses were conducted with Matlab
v.7 release 14 (The MathWorks, Natick, MA) and PRTools 2004
(Delft Pattern Recognition Group, Delft, The Netherlands) (29).

Airborne Image Analysis

The flight lines from the HyMap II sensor were subset to a
2 km2 area surrounding the experimental site. A minimum noise
fraction (MNF) transform (36–38) was applied to the imagery to
reduce the number of bands (i.e., dimensions) from the original
125 bands to 20 uncorrelated bands. This implementation of the
MNF algorithm after Green et al. (37), consists of two principal
component transformations. The first one estimates the amount of
noise in the data and subsequently decorrelates (i.e., results in a
transformed data set where there are no band to band correlations)
and rescales the noise while the second is a standard principal com-
ponent transform. The resultant bands which contained coherent
data were examined in multidimensional space to assess the separa-
bility of the grave versus other targets in the imagery, namely,
the false grave, exposed soil, pasture grass, and forest. All image
analyses were conducted in envi v4.1 (ITT Visual Information
Solutions, Boulder, CO).

Results

In Situ Spectra

The spectral signatures of the experimental grave and control were
not reliably separable with the range of classifiers with any number
of features immediately following burial (i.e., within 2 h after burial);
the overall error rate ranged between 15% and 35%. This indicates
that the grave and the false grave have a similar baseline spectral
response (determined by the chemical composition, organic material
content, texture, water content, and grain size).

1-Month Interval

One month following burial (March), the spectra of the grave
and false grave resembled each other visually with small deviations

in amplitude and shape; the amplitude of the false grave spectra
had a higher reflectance in the red and near infrared regions
(Fig. 2). Neither the grave nor the false grave had any regenerating
vegetation. Because both the creation of the grave in February and
this measurement in March took place in the dry season, there had
been no precipitation at the site. Results from the pattern classifiers
indicate that even with the apparent visual similarity of the spectra,
near perfect separability (0% training error; 1.9% testing error;
0.95% overall error) was achieved with the lmnc4 and lmnc5 classi-
fiers (see Methods section for classifier descriptions) using the 10
optimal bands. The lmnc3 classifier had the third lowest error with
overall error of 1.95% (0% training error; 3.9% testing error). The
Bhattacharyya test statistic (Fig. 3) illustrates the regions with the
greatest separability as the visible region from 400 to 550 nm and
in the near infrared above 850 nm. This is consistent with the
ranges from which the top 10 bands used in the classification were
chosen through the forward feature selection.

5-Month Interval

Five months following burial (July), the study area experienced
two and a half months of intermittent precipitation. Vegetation
growth and regeneration in this ecosystem is vigorous in the rainy
season, and therefore, it was expected that both the false grave
and the grave would have undergone natural vegetation regenera-
tion processes (21,39). However, as can be seen from the photo-
graphs in Fig. 2, the false grave is c. 60% vegetated with grasses
while the grave remains vegetation free. Analysis of the spectra
for this time period is included for completeness. The spectra of
the false grave, although highly variable, began to resemble the
spectral response characteristic of vegetation (40), while the spec-
tra of the grave continue to be representative of soil (16,41)
(Fig. 2). As expected, perfect separability is achieved with the
lmnc3 and knnc2 classifiers while lmnc2, lmnc5, and knnc2
achieved 1% overall error (0% training error; 2% testing error).
The Bhattacharyya test statistic highlights a narrow peak around
450 nm and a broad peak around 550 nm as the areas with the
greatest separability between the grave and false grave (Fig. 3),
again consistent with the ranges from the feature selection. The
region centered on 550 nm, the green peak in vegetation spectra
is representative of photosynthethic pigments, such as chlorophylls
a and b and photoprotection pigments such as those associated
with the xanthophyll cycle (42–45). Soil spectra do not exhibit this
characteristic feature (16) as can be seen in Fig. 2 when compar-
ing the mean spectral signatures of the grave and the false grave
for the 5-month time period. The plateau in the near infrared
region, apparent in the spectral signature of the false grave
(Fig. 2), is also a characteristic of vegetation spectra (40). Healthy
green vegetation tends to have strong absorption in the red wave-
lengths and high reflectance in the near infrared. The inflection
point between the two is referred to as the red-edge and can be
related to foliar nitrogen and chlorophyll content (46). The near
infrared plateau of vegetation reflectance is predominantly con-
trolled by internal structure at the leaf level (40,47) and is also
influenced by leaf area index, water content, plant physiology, and
stress at the canopy level (47).

16-Month Interval

Sixteen months following burial (June), the study site has experi-
enced an entire rainy season (May 2005 to January 2006), a second
dry season (February to April 2006), and one month and a half of
a second rainy season (May to June 2006). Regeneration of the
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pasture grasses is expected to be complete on both the grave and
the false grave. Regeneration can be seen on the grave, although c.
30% remains vegetation-free around the edges (Fig. 2). Conversely,
the false grave can no longer be distinguished from the undisturbed
pasture (Fig. 2). The mean spectral response of both the grave and
false grave is that of vegetation (Fig. 2) that provides a valid spec-
tral comparison. The false grave clearly has a higher reflectance in
the green peak and the near infrared plateau as well as stronger
absorption in the red wavelengths (Fig. 2). The Bhattacharyya test
statistic indicates that optimal regions for differentiating the spectra
are the near infrared plateau above 700 nm with fairly reasonable
separability in the 550–700 nm region as well, corresponding with
the forward feature selection results. Perfect separability was
achieved with the lmnc2, lmnc3, lmnc4, and knnc2 with 1.19%

overall error for lmnc5 and treec (0% training error; 2.38% testing
error).

Hyperspectral Airborne Imagery

Representative spectra of the grave, false grave, pasture grass,
and forest from the HyMap II imagery are shown in Figs. 4a and
4b, while the experimental site is illustrated in Fig. 1. The best
separation in n-dimensional space between the grave and all other
targets in the imagery is with the top nine eigenimages from the
forward MNF transform with the exception of eigenimage 7
which did not contribute to the separability (Fig. 5). The forest
class is the most dissimilar, while the two classes closest in
n-dimensional space to the grave are the false grave and dry
grass, as expected.

Discussion

Our results demonstrate that the reflectance spectra of the grave
are readily distinguishable from soil disturbance (i.e., false grave)
throughout the entire 16 months after burial using in situ hyper-
spectral data. This time period (16 months) is representative of
instances where both the grave and false grave are in a purely
‘‘exposed soil’’ state (1 month following burial), a ‘‘transitional
mixture’’ of vegetation and exposed soil (5 months following bur-
ial), and ‘‘vegetated’’ (16 months following burial). From airborne
imagery collected 1 month following burial, the spectra of the
grave also showed a clear separation from the other classes in the
imagery in n-dimensional space.

FIG. 3—Bhattacharrya’s test statistic indicating the areas of the spectrum
with the greatest separability between the reflectance of the experimental
animal mass grave and the false grave, 1, 5, and 16 months following burial
from the in situ hand-held measurements.

FIG. 2—Progression of the spectral signatures of the experimental animal mass grave and the false grave over 16 months from the in situ hand-held
measurements. Mean is indicated by a solid line, standard deviation by dotted lines.
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As a form of machine learning, the pattern classifiers adapted to
new data to detect and extrapolate patterns (48). This ability and
the feature selection were the key for identifying the most distinct
spectral regions and discriminating the spectra of the grave during
the sampling intervals when the spectra of the grave and false
grave were very similar, namely, 1 and 16 months following burial
(Fig. 2). Focusing on a few specific narrow bands facilitated the
separation for all time periods, especially when shape and ampli-
tude were similar.

During vegetation regeneration, the spectral properties of the vege-
tation provide additional insight into the detection of clandestine
graves. Because vegetation will ultimately obscure grave sites fairly
quickly in most environments, investigating the underlying basis for
the spectral differences is an important question. It is shown by
Calvo-Alvarado et al. (49) that the reflectance spectra of blades of
the P. conjugatum growing on the grave and in the pasture measured

at the 16-month interval differ and can be separated with the pattern
classifiers perfectly. The time frame for which this difference in the
vegetation spectra lasts, is yet to be determined. In an analysis of the
soil chemistry, Calvo-Alvarado et al. (49) showed significant differ-
ences in multiple elemental concentrations (e.g., N, S, C, Mn among
others) between samples from the grave and the false grave, collected
16 months after burial, which will influence the reflectance of the
regenerating vegetation (50). Over 80 volatile organic compounds
resulting from the decomposition of the human body have been iden-
tified (51), a number of which have also been shown to be detectable
at the surface of experimental graves over a period extending from
burial to 4 years (52). Among the most prominent are dimethyl disul-
fide (C2H6S2), toluene (C7H8), hexane (C6H14), benzene 1,2,4-tri-
methyl (C9H12), cadaverine (C5H14N2), and putrescine (C4H12N2)
(51,53). These and other decomposition compounds in the soil may
have inhibited vegetation regrowth by creating an initially toxic envi-
ronment for vegetation, soil microbes, and micorrhizae, explaining
the lack of vegetation 5 months following burial and the incomplete
vegetation cover 16 months postburial on the grave. These differ-
ences in soil chemistry must also influence the overall difference in
the spectral response of the grass as shown by Calvo-Alvarado et al.
(49). Similar differences in vegetation regrowth and soil elemental
concentrations have been shown elsewhere, during surface cadaveric
decomposition (50). The heat and water vapor produced during
decomposition condenses when reaching the surface, thus precipitat-
ing the soluble cations, salts, and other toxic compounds. This move-
ment of the vapor is facilitated by the excavation itself, and
subsequent refilling which decreases the compaction and increases
soil porosity. Following dissipation of the toxicity, it may be specu-
lated that the soil becomes enriched either through the translocation
of nutrients or via the liberation of nutrients present in the soil col-
loids at the interlayers (2:1 clays and allophane in this case) because
of the increased temperature and gas ⁄ water vapor emission. For
example, Calvo-Alvarado et al. (49) showed that sulfur concentration
is nearly double from the grave as from the false grave.

Organic compounds have a high rate of adsorption in clay-based
soils (such as the Inceptisol from the study area) thus adhering to
the soil particles, resisting leaching (54). Some of the compounds
produced during decomposition such as benzene and toluene
(hydrocarbons) are common soil contaminants from, say, under-
ground fuel tank ruptures. Even at low concentrations, hydrocarbon
contamination has been shown to have adverse effects on the
metabolism of soil microbes and plants (55). Carter et al. (50)
indicate that surface cadaveric decomposition can alter the soil
chemistry and vegetation for up to 10 years, therefore, it is plausible
that the differences seen 1 month following burial in the soil spectra
and in the vegetation spectra 16 months following burial are a result
of the subsurface cadaveric decomposition, mainly from the soft tis-
sues. However, the changes in the chemistry of subsurface mass
graves through time remain largely unstudied with only anecdotal
observations of spatial variability of body preservation (56–60).

An important consideration for future studies is to examine the
effect of spatial resolution, especially in the choice of imagery. In
this study, the spatial resolution achievable by airborne hyperspec-
tral sensors (5 m) was found to be sufficient for the detection of a
mass grave that covers an area of 25 m2. This same data would
also be applicable to larger sites where several pixels would repre-
sent the grave. For buried landmine detection, a problem analogous
to the detection of graves, it was found that a resolution finer than
half of the burial scar did not improve discrimination accuracy
using hyperspectral data (61,62). Additional studies are necessary
to examine data with a coarser spatial resolution such as imagery
from civilian hyperspectral satellite sensors (e.g., 17 m for the

FIG. 4—(a) Mean spectra of the grave, false grave, pasture grass, and
forest from the hyperspectral airborne image (4.7 m spatial resolution) over
the entire 125 bands and (b) same spectra as in (a) truncated to the 458.9–
901.8 nm range.

FIG. 5—Eight dimensional scatter plot of the spectral signatures of pixels
representing the grave versus the false grave, grass, and forest following
the forward minimum noise fraction (MNF) transform. Notice that the mass
grave containing bodies is clearly separable from other classes. The spectra
are from the airborne hyperspectral image. Each point represents one pixel.
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PROBA-CHRIS sensor). At that scale, each pixel is a nonlinear
mixture of multiple elements, posing a subpixel problem which,
though not impossible, results in a more complicated analysis. The
detectability of graves approximately the same size as examined
here (i.e., 5 · 5 m) would be dependent upon the surrounding envi-
ronment and the amount of mixing within the pixels. As a general
guideline, minimal mixing between the grave and the spectral
response of other elements within the pixels, and maximal dissimi-
larity between the spectral response of the grave and the other
elements within each pixel enhances the potential for detection.

In addition, based on our results, hyperspectral data is crucial for
highest accuracy in detecting the graves. It is unlikely that data
from high spatial resolution (e.g., 2 or 4 m) multispectral sensors
with four broad spectral bands would result in the same accuracy
(i.e., low error) for detecting the graves. Such sensors are sufficient
for separating exposed soil from other cover types such as vegeta-
tion or urban features, but the spectral resolution of the broad bands
does not have the detail needed to discriminate between a grave
containing cadavers and other types of soil disturbance. As shown
here, very specific narrow bands are needed to discriminate
between the spectral response of the grave and disturbed soil with
the lowest error.

Additional considerations include the effect of time and environ-
ment. Our results show successful discrimination over a 16-month
period from a tropical moist forest environment that experiences
seasonal precipitation. Because vegetation is highly responsive to
its environment, these influences are relayed through its spectral
properties. As the soil effects dissipate over time, differences in
the spectral response of vegetation may also dissipate. However,
because the chemical changes within a mass grave through time
have not been studied, it is unknown whether changes in the soil
environment may linger for several years or decades as shown by
Carter et al. (50) for surface decomposition. By applying the meth-
odology presented in this study to several actual mass graves of
varying ages and in varying environments, the questions regarding
the effects of time may begin to be resolved. Investigating the
transferability of our results to other ecosystems is necessary to
address both a wider applicability of these methods within and out-
side the tropics and also to identify the commonalities and differ-
ences in the results found in other ecosystems. For example, in dry
ecosystems with little to no vegetation, the focus of the analysis
must be on the differences in the reflective and absorptive proper-
ties of the substrate (i.e., soil, sand, etc.) as in the results 1 month
following burial in this study. Differences in the spectral properties
of the substrate may then be traced back to changes in the chemi-
cal composition, mineral structure, grain size, water content, surface
texture, etc. of the substrate to better understand the differences in
reflectance. While in a temperate environment, for example, the
effect of the freeze-thaw cycles on decomposition must also be
taken into consideration.

We demonstrate that the spectral information inherent in a hyper-
spectral image provides the fundamental objective information that
can assist the detection of mass graves. By relying solely on the
spatial context and shapes of objects as one would with an aerial
photograph or panchromatic image, the shapes and context of
objects may be attributed to alternatives for soil disturbance. With
such data, graves cannot be objectively distinguished from other
alternatives as seen in the high resolution aerial photograph in
Fig. 1. Without consideration of the spectral domain, the objective
view provided by imagery (airborne or satellite) therefore becomes
subjective and dependent upon the experience and personal biases
of the interpreter. By taking into account the spectral information,
however, the analysis becomes an objective assessment of the data,

and as we have shown, a successful tool for locating possible mass
burials. The final proofing that the mammal decomposition signal
is human requires that the feature is excavated in the normal way,
as no unique chemical human identifier is currently known (52).

Conclusions

The results from this study represent a real breakthrough in the
remote detection of clandestine mass graves. We found distinct
differences in the spectral signature of a simulated grave that
contained mammalian carcasses to that of a false grave from in situ
spectrometry over a 16-month period following burial. We also
identified distinct spectral differences from airborne hyperspectral
imagery 1 month following burial. With further development, air-
borne hyperspectral imagery could be used as a rapid first-look to
detect and confirm the existence of suspicious decomposition signa-
tures, i.e., mass graves. This study has demonstrated that fly-over
and potentially satellite hyperspectral imagery provides a new
detection tool for the international community. Furthermore, the
location of graves is one of the first steps in organizing a recovery
team to exhume and identify the remains for the purpose of evi-
dence collection for prosecution and for the return of individuals to
families. Remotely sensed data comprises evidence in its own right
which is scientifically defensible and therefore, an instrument for
domestic or international legal process and justice.
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